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SUMMARY

We propose a new methodological framework for the analysis of hierarchical functional data when the
functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to
a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds
versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in
contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and non-
parametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-
the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant
to many new data sets where the object of inference are functions or images that remain dependent even
after conditioning on the subject on which they are measured. Supplementary materials are available at
Biostatisticsonline.

Keywords: Colon carcinogenesis; Covariogram estimation; Functional data analysis; Hierarchical modeling;
Mixed models; Spatial modeling.

1. INTRODUCTION

We propose fast, principal component-based methods for the analysis of hierarchical functional data when
the functions at the lowest level of the hierarchy are correlated. The methodology provides an intuitive
and natural decomposition of observed functional variability, can be extended to larger and more complex
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data structures, and is more computationally efficient than competing methods. Our methods are moti-
vated by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment.
However, our models are general and will be relevant to many new data sets where the object of inference
are functions or images that remain dependent even after conditioning on the subject on which they are
measured.

Our basic framework is developed for multilevel data structures of the following type: (1) groups, (2)
subjects within groups, (3) units within subjects, and (4) subunits. This setup is inspired by analysis of
variance (ANOVA) structures with 2 important differences. First, the measurements at the unit level are
functions evaluated at subunits and thus the subunits are not treated as a separate level. Second, conditional
on the subjects, the unit measurements may be spatially correlated. The aim of our methodology is to
provide a computationally efficient methodology with the following goals: (1) to provide inference on the
group mean differences; (2) to quantify the spatial covariance between functional unit responses and hence
to provide an understanding of how the units influence/predict one another; (3) to provide a decomposition
of the observed functional variability into within- and between-unit and measurement error variability; (4)
to suggest simpler parametric models where simplifications are warranted by the data; and (5) to allow
sensitivity analyses such as the deletion of single subjects or groups of subjects.

There are many instances of data that have the structure we discuss or a structure closely related to
it. Here we mention a few; the key point being that each subject has a set of units, which are in fact
measurements of functions and which, given the subject, are spatially correlated. The first example is data
generated from a study of brain activity using quasi-continuous electroencephalographic (EEG) signals.
In this study, subjects wear a helmet that records tens of EEGs from various parts of the brain for up to
48 h. In this case, units are individual EEG signals, which have a natural spatial correlation because they
are collected from the same brain. The second example is gene expression data (Xiaoand others, 2009).
In this case, the groups are individuals, the subjects are chromosomes, and the units are genes. When
gene expression is measured over time, we have spatially correlated functions within a subject since the
expression levels of genes on the same chromosome frequently exhibit significant spatial correlation (see
Xiao and others, 2009). The third example concerns data obtained from studies of calcium ion cellular
levels (Martinezand others, 2010). In this case, the subjects are individuals and the units are cells. Time-
course calcium ion signals are measured for each cell producing a time series for each cell. As the location
of each cell is known, it is reasonable to assume and study the spatial correlation of these time series. The
last example concerns data from a colon carcinogenesis study. In this case, the groups are groups of rats
who are fed the same diet before a carcinogen exposure, the subjects are rats, and the units are colonic
crypts. The concentration of p27 (Sgambatoand others, 2000), a cell cycle inhibitor protein, is measured
for each cell in the crypt, as a function of the relative cell positions within the crypt (Grambschand others,
1995; Roncucciand others, 2000). Within each rat the functional response of the crypt the p27 expression
exhibits spatial correlation. For more details see Section 6.

We now introduce our model. Throughout the paper, the symbol1 will refer to spatial locations
or lags. Denote byYdri (t,1dri ) the measured response at the subunit locationt within the unit i =
1, . . . , Mdr located at the spatial location1dri within the subjectr = 1, . . . , Rd from group d =
1, . . . , D. Our model forYdri (t,1dri ) is Ydri (t,1dri ) = μd(t) + Zdr (t) + Qdri (t,1dri ) + εdri (t),
whereμd(∙) is the group mean function andZdr (∙) is the subject-specific deviation from the group mean.
The second level unit-specific deviation from the subject-specific mean is, for a unit at spatial location
1dri , Qdri (t,1dri ), andεdri (t) is noise. We note in passing that neither the group-level mean,μd(t),
nor the subject-level mean,μd(t) + Zdr (t), is indexed by the spatial locations1 of the units within the
subjects, which is because neither the groups nor the subjects have spatial locations.

By incorporating the spatial location1dri of the units within the subjects, we are specifically allowing
for the possibility that these units are spatially correlated given the subject. As a means of modeling this
spatial correlation, we decomposeQdri (t,1dri ) into 2 parts, one that does not exhibit spatial correlation
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and one that does. We writeQdri (t,1dri ) = Wdri (t) + Udr (1dri ), whereWdri (t) depends only on the
subunit location within the unit,t , andUdr (1dri ) depends only on the unit spatial location,1dri . The
correlation between the unit mean functions,Qdri (t,1dri ), is modeled explicitly via the random spatial
processUdr (1dri ). This is a standard technique in multilevel modeling that we adopt in our more complex
multilevel functional framework. We assume thatZdr (t), Wdri (t), Udr (1dri ), andεdri (t) are zero mean,
mutually uncorrelated random processes and thatεdri (t) is a white noise process. In Section 3, we present
more details about this model and its assumptions.

2. METHODS TO MODEL FUNCTIONAL DATA

The analysis of functional data is an area of modern statistics under intense methodological development;
see, for example, the excellent monograph by Ramsay and Silverman (2005). There already exists a rich
literature dedicated to the analysis of single-level functional data (Shiand others, 1996; Brumback and
Rice, 1998; Staniswallis and Lee, 1998; Wang, 1998; Fan and Zhang, 2000; Rice and Wu, 2001; Wu
and Zhang, 2002; Liangand others, 2003; Wu and Liang, 2004; Wu and Zhang, 2006). Grambschand
others(1995) employed functional data analysis-based methods for the first time to model the crypt data
structure similar to the one we consider here, although they assumed only one level of hierarchy.

In a multilevel functional framework, Guo (2002) proposed a spline-based approach for functional
mixed-effects models. Morrisand others(2001) analyzed hierarchical models with a structure similar to
ours based on DNA adduct data, using frequentist methods, but they had no available spatial measure-
ments of the crypt positions. Diand others(2009) introduced multilevel functional principal component
analysis (FPCA) in the context of sleep studies. Their framework is the functional equivalent of multi-
way ANOVA, uses functional principal component (FPC) bases to reduce dimensionality and accelerate
algorithms, and assumes independence of functions at the lowest level of the hierarchy. Morrisand others
(2003) and Morris and Carroll (2006) developed a wavelet-based methodology for modeling functional
data occurring within a nested hierarchy. However, Morrisand others(2003) assumed that the functions
at the lowest level of the hierarchy (crypts) are independent. Morris and Carroll (2006) allow for general
covariance structures but their approach is not tailored to spatial dependence of the type arising in our data.

There have been previous analyses of data with correlation of the functions at the deepest level of
the hierarchy. Baladandayuthapaniand others(2008) developed a Bayesian methodology for a data struc-
ture exactly as ours. However, there are key differences. First, we use multilevel principal components,
while Baladandayuthapaniand othersused regression splines. Second, we use a method of moments
approach combined with best linear unbiased prediction (BLUP), while Baladandayuthapaniand others
used Bayesian analysis. These 2 differences make our approach much faster, as detailed in Section 5.2. As
a consequence, we are now able to conduct routine and large simulation studies as well as quickly analyze
previously unexplored facets of the data. Third, our methods can easily be applied to data sets that are
orders of magnitude larger than the data set considered in this paper.

A key technical difference with Baladandayuthapaniand others(2008) is how the functions at the
deepest level of the hierarchy, the units, are modeled. In our model, we decompose the functions at the unit
level,Qdri (t,1dri ), additively, involving 2 uncorrelated components: a random functionWdri (t) and a
spatial processUdr (1dri ). In contrast, Baladandayuthapaniand othersmodelQdri (t,1dri ) via regression
splines with spatially correlated random coefficients,βdri . Stacking the coefficients into a vectorBdr ,
they assume that the coefficients have a separable covariance structure, cov(Bdr ) = 6dr (1) ⊗ 61, where
6dr (1) is a spatial correlation matrix and61 = cov(βdri ) which, in order to achieve parsimony, is forced
to have the same form as the mixed-model approach to smoothing (Ruppertand others, 2003).

Li and others(2007) took a nonparametric approach to this problem using kernel smoothing. A key
difference between our methods and theirs is that they treat the sampling subjects, the rats, as fixed and
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not random; thus removing one level of the hierarchy. Their key aim is to estimate the correlation function
between the units, and they too take a separable structure approach, so that, conditional on the subject,
the covariance between a measurement in a unit at subunits and a measurement at subunitt of a second
unit distance1 from the first is modeled asG(s, t)ρ(1), whereas ours is modeled simply asρ(1)σ 2

u : of
course, within a single unit, the covariance isK W(s, t) + ρ(1)σ 2

u . A major advantage of our approach
is that it easily scales up: we can handle more realistic situations where many subjects have only a few
units. In contrast, the approach of Liand othersassumes that there is a fixed number of subunits per unit,
and that there are sufficient units to ensure that the subject-specific function is accurately estimated.

The paper is organized as follows. Section 3 introduces our statistical framework and model assump-
tions for spatially correlated multilevel functional data. Section 4 presents estimation methods for each
model component. Section 5 outlines the main results of the simulation study performed. Section 6
presents our inferential results for the colon carcinogenesis data, and Section 7 provides the conclud-
ing remarks. To ensure reproducibility of our results accompanying software, simulations, and analyses
results described in this paper are available as supplementary atBiostatisticsonline.

3. MODEL

3.1 Basic model and general setup

In this section, we provide the details of the modeling approach. The decomposition described in Section
1 leads to our basic model:

Ydri (t,1dri ) = μd(t) + Zdr (t) + Wdri (t) + Udr (1dri ) + εdri (t), (3.1)

whereμd(∙) is the group mean fixed effect,Zdr (∙) andWdri (∙) are random functions at the subject and unit
level, respectively,Udr (∙) is a spatial process, andεdri (t) is white noise. We use the framework suggested
by Di and others(2009) to modelZdr (t) andWdri (t), the level 1 and 2 processes, respectively. IfZdr (t)
andWdri (t) are processes in L2[0, 1] and{φ(1)

k (t) : k > 1} and{φ(2)
` (t) : ` > 1} are 2 orthonormal bases in

L2[0, 1], that is
∫ 1

0 φ
(1)
k (t)φ(1)

k′ (t)dt = δkk′ , whereδkk′ is the Kronecker delta, thenZdr (t) andWdri (t) have

unique representationsZdr (t) =
∑∞

k=1 ξdr,kφ
(1)
k (t) andWdri (t) =

∑∞
l=1 ζdri,`φ

(2)
l (t), where the random

coefficientsξdr,k andζdri,` are given byξdr,k =
∫

Zdr (t)φ
(1)
k (t)dt andζdri,` =

∫
Wdri (t)φ

(2)
l (t)dt , re-

spectively. Thus, model (3.1) becomes

Ydri (t,1dri ) = μd(t) +
∞∑

k=1

ξdr,kφ
(1)
k (t) +

∞∑

l=1

ζdri,`φ
(2)
l (t) + Udr (1dri ) + εdri (t), (3.2)

wheret ∈ [0, 1] is an arbitrary subunit within thei th unit and1dri is the spatial location of this unit
within subjectr . This form of the model cannot be used in practice because of the infinite summation, and
the following truncated version will be used instead

Ydri (t,1dri ) = μd(t) +
K1∑

k=1

ξdr,kφ
(1)
k (t) +

K2∑

l=1

ζdri,`φ
(2)
l (t) + Udr (1dri ) + εdri (t), (3.3)

whereK1 andK2 are truncation lags defining a double sequence of approximating models for the infinite-
dimensional model (3.2). Section 4.6 provides our procedures for selecting a reasonable number of or-
thonormal eigenvectors at both levels. In Section 4, we will also describe how we construct and estimate
the basis functions.
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While model (3.3) may look complex and its implementation may seem difficult, we will show that
model inference involves a sequence of simple steps that results in fast implementation; in R the model
can be fit in seconds. We will use parsimonious decompositions of the first and second level functional
spaces using principal components as in Diand others(2009). This will ultimately ensure important
computational advantages over previous methods. In contrast to Diand others, our approach allows for
correlation among functions at the lowest level of the hierarchyQdri (t,1dri ). This correlation is allowed
to vary with the distance between the location of the units and is of considerable scientific interest in our
application.

We make the following 3 assumptions:

A.1 E(ξdr,k) = 0, E(ξ2
dr,k) = λ

(1)
k , E(ξdr,kξdr,k′) = 0 for k 6= k′;

A.2 E(ζdri,`) = 0, E(ζ 2
dri,`) = λ

(2)
l , E(ζdri,`ζdri,`′) = 0 for l 6= `′;

A.3 {ξdr,k : k = 1, 2, . . .} are uncorrelated with{ζdri,` : l = 1, 2, . . .}.

Assumptions A.1 and A.2 are standard in functional models, while A.3 corresponds to our assumption
that Zdr (∙) andWdri (∙) are uncorrelated. The functional bases{φ(1)

k (t) : k = 1, 2, . . .} and{φ(2)
l (t) : l =

1, 2, . . .} at levels 1 and 2 of the hierarchy, respectively, are each assumed to be orthonormal but are not
required to be mutually orthonormal.

We also assume that{Udr (1) : 1 ∈ R} is a zero-mean, second-order stationary, isotropic random pro-
cess (Cressie, 1991, Chapter 2) inL2(R), observed at locations1dr1, . . . ,1dr Mdr in [0, L]; this means
that the process has constant varianceσ 2

U , and its correlation function depends only on the distance be-
tween the sampling locations. In addition, ifρ(1) = corr{Udr (1

∗),Udr (1
∗ + 1)} denotes the process

correlation function, we assume

A.4 lim ρ(1) = 0 as the distance lag1 → ∞;

A.5 lim ρ(1) = 1 as the distance lag1 → 0.

Estimating the correlation of this underlying spatial process plays a major role in our paper.

3.2 Further model specification

In theory, the choice of bases in Section 3.1 is not important. For example, in the same application Bal-
adandayuthapaniand others(2008) use regression splines, while Morris and Carroll (2006) use wavelets.
We use parsimonious orthonormal bases at both levels of the hierarchy, estimated from the data, to obtain
fast and robust computational algorithms; see Section 5 for more information about computation times.

Our multilevel FPCA (MFPCA) is based on the covariance operatorsK Z(t, s) = cov{Zdr (t), Zdr (s)}
of the Zdr (∙) process andK W(t, s) = cov{Wdri (t), Wdri (s)} of the Wdri (∙) process. Mercer’s theorem
provides the spectral decomposition ofK Z(s, t) =

∑∞
k=1 λ

(1)
k φ

(1)
k (s)φ(1)

k (t) and K W(s, t) =
∑∞

`=1 λ
(2)
` φ

(2)
` (s)φ(2)

k (t), whereλ
(1)
1 > λ

(1)
2 > . . . andλ

(2)
1 > λ

(2)
2 > . . . are the ordered level 1 and level

2 eigenvalues and{φ(1)
k (t)}k and{φ(2)

` (t)}` are the corresponding eigenfunctions. To use the Karhunen–
Loève expansions ofZdr (t) andWdri (t) one needs to obtain asymptotically consistent estimators of the
covariance operatorsK Z andK W. We now provide such estimators based on the method of moments and
on the decomposition of the total covariance operator.

Denote byK Y
T (t, s) = cov{Ydri (t,1dri ), Ydri (s,1dri )} the total covariance of the observed process

Ydri (∙,1dri ), by K Y
B(t, s,1) = cov{Ydri (t,1dri ), Ydr j (s,1dr j )} the between-unit covariance, and by

K Y
W(t, s,1) = 1

2cov[{Ydri (t,1dri ) − Ydr j (t,1dr j )}, {Ydri (s,1dri ) − Ydr j (s,1dr j )}] the within-unit
covariance at subunit locations(t, s) for units situated at distance1 = |1dri − 1dr j |. Then,

K Y
T (t, s) = K Z(t, s) + K W(t, s) + σ 2

U + σ 2
ε δts, (3.4)
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whereδts is equal to 1 whent = s and 0 otherwise. Moreover,

K Y
B(t, s,1) = K Z(t, s) + ν(1); (3.5)

K Y
W(t, s,1) = K W(t, s) + σ 2

U − ν(1) + σ 2
ε δts, (3.6)

whereν(1) = cov{Udr (1+1∗),Udr (1
∗)} = σ 2

U ρ(1) is the covariance function at lag1 of the process
Udr . Section 4 provides the technical details for model estimation based on the total covariance operator
decomposition introduced in this section.

4. MODEL ESTIMATION

4.1 Overview

Equations (3.4–3.6) provide the intuition behind the road map for our estimation procedure. The steps of
the algorithm are the following:

1) Obtain an estimator of the covariogramν(1), see Section 4.2;

2) Use (3.4–3.6) to estimateK Z(t, s) andK W(t, s) and then estimate the eigenvalues and eigenfunc-
tions of theK Z(t, s) andK W(t, s) operators, see Section 4.3;

3) Obtain estimates of the group-specific mean functionsμd(t), see Section 4.4;

4) Estimate the principal component scores, see Section 4.5;

5) Use (3.6) fort = s to estimateσ 2
ε , see Section 4.7.

The remaining sections provide details for each individual step of this procedure.

4.2 Spatial covariance

The covariance function of the spatial processν(1) quantifies the relationship between observations
located within units at distance1 apart. We propose a method of moments estimator for the covari-
ance functionν(1). Because of the complex structure of model (3.3), estimation of the spatial co-
variance function entails a preliminary estimation of the within-units covariance functionK Y

W(∙, ∙,1).
Let K̃ Y

W(t, s,1) be an estimator of the within-units covariance functionsK Y
W(t, s,1) at subunit lo-

cations(t, s) for units situated at distance1 apart, defined as follows. Fixk and define the weights
wdri j (1) = w

(k)
dri j (1) = 1{|1dr,i j | ∈ Nk(1)}, whereNk(1) is the subset ofkth closest values to1

among all the pairwise unit distances and1dr,i j = |1dri − 1dr j |. Then estimate

K̃ Y
W(t, s,1) =

1

2

∑
d,r,i

∑
j 6=i wdri j (1){Ydri (t,1dri ) − Ydr j (t,1dr j )}{Ydri (s,1dri ) − Ydr j (s,1dr j )}

∑
d,r,i

∑
j 6=i wdri j (1)

(4.1)

by averaging the products of pairwise differences of responses at the subunit locations(t, s) and within
units located at distances that are among thekth closest values to1. Equation (4.1) can be viewed as a
kernel estimator with moving kernel bandwidth, and thus it provides a consistent estimator ofK Y

W(t, s,1).
Using (3.6) along with the Assumption A.4 that the correlation function vanishes beyond a certain

range, we modify this estimator as follows. Let1∗ be a preset threshold such thatρ(1) is negligible
beyond1∗; the range [0,1∗] is typically referred to as the covariance range (see Cressie 1991, Chapter
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2.3). To correct for the decay of the spatial correlation, we defineK̂ Y
W(t, s,1) as






K̂ Y
W(t, s,1) = K̃ Y

W(t, s,1), 1 ∈ [0,1∗)

K̂ Y
W(t, s,1) = 1

2|N(1∗)|

∑
d,r,i

∑
{ j :1dr,i j >1∗}{Ydri (t,1dri ) − Ydr j (t,1dr j )}

×{Ydri (s,1dri ) − Ydr j (s,1dr j )}, 1 > 1∗,

(4.2)

where|N(1∗)| is the cardinality of the setN(1∗) = {(d, r, i, j ) : 1dr,i j > 1∗}. Using K̂ Y
W(t, s,1), we

define an estimator for the spatial covariance functionν(1) by

ν̂(1) =
1

|{(t, s) : t 6 s}|

∑

t

∑

t6s

{K̂ Y
W(t, s,1∗) − K̂ Y

W(t, s,1)}, (4.3)

where1 ∈ [0,1∗]. This is a consistent estimator of the covariance functionν(1) because (a)̂ν(1)
is based on the difference between 2 consistent estimators ofK Y

W(t, s,1) and K Y
W(t, s,1∗) for which

K Y
W(t, s,1∗)− K Y

W(t, s,1) = ν(1)−ν(1∗) and (b) the correlation function,ρ(1), is assumed to satisfy
Assumption A.4, and henceν(1∗) ≈ 0. The covariance estimator is nonsmooth, a feature inherited from
K̃ Y

W(t, s,1).
An important advantage of estimating the covariance functionν(1) via the cross-semivariogram

K Y
W(t, s,1) is that the resulting estimator does not depend on the estimation of the group mean func-

tions. This was achieved by taking pairwise differences within the same group (see (4.1)). Estimating the
covariance through the cross-covariogram of the process has been considered by Liand others(2007),
who suggest a kernel estimator with a suitably selected global bandwidth. Another alternative, perhaps
closer to our approach, is to use quantile binning, where the range of the spatial process is partitioned
in bins determined by equally spaced quantiles of the unit distances data. Regardless of the method used
(k-nearest neighbor, quantile binning, or kernel smoothing), the smoothing parameter can either be fixed
to a reasonable value or can be estimated using standard methods such as cross-validation.

4.3 Covariance operators

The next step is to estimate the covariance operators at levels 1 and 2,K Z and K W. For this, we use
the threshold1∗ defined in Section 4.2 as the value of1 for which the observations corresponding
to units situated at distance equal to or larger than this lag are assumed uncorrelated. Equations (3.4–
3.6) along with the Assumptions A.4 and A.5 suggest a natural estimator for the covariance opera-
tor at each level. To begin with, let̂K Y

T (t, s) be the method of moment estimator of the total covari-

ance of the observed process:̂K Y
T (t, s) =

∑D
d=1

∑Rd
r =1

∑Mdr
i =1 {Ydri (t,1dri ) − Ȳd∙∙(t)}{Ydri (s,1dri ) −

Ȳd∙∙(s)}/(
∑D

d=1
∑Rd

r =1 Mdr ), whereȲd∙∙(t) =
∑Rd

r =1

∑Mdr
i =1 Ydri (t,1dri )/

∑Rd
r =1 Mdr . The estimator of

K Z(t, s) is defined as

K̂ Z(t, s) = K̂ Y
T (t, s)

−
1

2|N(1∗)|

∑

d,r,i

∑

{ j :1dr,i j >1∗}

{Ydri (t,1dri ) − Ydr j (t,1dr j )}{Ydri (s,1dri ) − Ydr j (s,1dr j )},

where |N(1∗)| is the cardinality of the setN(1∗) = {(d, r, i, j ) : 1dr,i j > 1∗}. The estimator of
K W(t, s) is defined by

K̂ W(t, s) =
1

2|N(1∗)|

∑

d,r,i

∑

{ j :1dr,i j >1∗}

{Ydri (t,1dri ) − Ydr j (t,1dr j )}{Ydri (s,1dri ) − Ydr j (s,1dr j )}

−σ̂ 2
U , (4.4)
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for t 6= s, whereσ̂ 2
U = ν̂(0) is an estimator of the process varianceU . The diagonal termst = s are

left out in the estimation of̂K W(t, s), in order to eliminate the nugget effect, implied by expression (3.6).
For t = s, we defineK̂ W(t, s) by predictingK W(t, t) using a bivariate thin-plate spline smoother of
K̂ W(s, t), s 6= t , a method proposed by Diand others(2009) and based on the original “smoothing on the
diagonal” ideas described by Yaoand others(2003) and Yao and Lee (2006) for single-level FPCA.

Once consistent estimators ofK Z(t, s) and K W(t, s) are available, the spectral decomposition and
functional regression proceed as in the classical single-level functional case. Thus, eigenanalysis for each
K̂ Z(t, s) andK̂ W(t, s) provides consistent estimates of the eigenvaluesλ̂

(1)
k , λ̂(2)

` and eigenfunctionŝφ(1)
k ,

φ̂
(2)
` . The estimatorŝK Z(t, s) and K̂ W(t, s) may not be positive definite; in this paper we use trimming

the eigenvalue–eigenfunctions pairs where the eigenvalues are negative (Halland others, 2008; Müller,
2005; Yaoand others2005). Halland others(2008) shows that this method is more accurate than the
method of moments.

Remarks on theoretical properties.Because the estimatorŝν(1), K̂ Z , andK̂ W are method of moments
estimators, it is relatively straightforward to establish their consistency and asymptotic normality. We only
provide the less well-known results and the intuition behind the proofs.

Consider first the spatial covariance estimatorν̂(1). This estimator is based on 2 estimators
K̂ Y

W(t, s,1) and K̂ Y
W(t, s,1∗). The cross-semivariogram estimator,K̂ Y

W(t, s,1), is a standard extension
of the classical method of moments estimator of the semivariogram due to Matheron (1962) to address
the case of irregularly spaced data, which replaces a fixed lag1 by a “tolerance” region around1. The
setNk(1), used in (4.1), is precisely the tolerance region around1 that containsk distinct pairs, with
k > 30 (see Journel and Hujibregts, 1978) and is assumed to be as small as possible to retain the spatial
resolution. For fixed subunits(t, s), the asymptotic Gaussian distribution of such extended estimators of
the sample cross-semivariogram, and hence their consistency, has been established under appropriate mix-
ing conditions, which ensure that the process dies off sufficiently quickly as the lag distance1 increases
(see Cressie,1991, Chapter 2.4, and the references therein). The properties of the cross-semivariogram
K̂ Y

W(t, s,1∗) are determined in a similar way, with the difference that the tolerance region around1∗

contains all the pairs at distance greater than1∗. Under the assumption that the spatial covariance is
assumed to be negligible beyond the preset threshold1∗, it follows that the estimator̂K Y

W(t, s,1∗)
is asymptotically consistent as well. This concludes our intuitive justification about the consistency
of ν̂(1).

Consider now the functional covariance operatorsK̂ Z andK̂ W. Note that the previous arguments also
imply that the covariance operator̂K W is asymptotically consistent. To show thatK̂ Z is consistent, it is
sufficient to show that the estimator̂K Y

T is consistent. This is straightforward becauseK̂ Y
T is simply a

method of moment estimator of the total covariance and thus standard asymptotic theory applies.

4.4 Group specific mean functions

An important characteristic of the covariance estimators obtained in Sections 4.2 and 4.3 is that they do
not depend on the group mean functions. Thus, estimating the group mean functions can be viewed as a
regression problem with known (or estimated) residual covariance. In the parametric case, this problem
can be reduced to weighted least squares error regression. In the nonparametric case, standard smoothing
techniques, such as penalized splines, could be applied to reweighted (or pre-whitened) data. Alterna-
tively, the penalized likelihood criterion can be adapted to incorporate a known covariance structure of
the residuals. We use the generalized (weighted) least squares approach and estimate the group mean
functionsμ̂d(t) under the parametric assumption that the functions have a linear form in Section 5 and a
quadratic form in Section 6.
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4.5 Principal component scores

Assume for now that the truncation lagsK1, K2, and the eigenfunctions,φ
(1)
k (∙), φ

(2)
l (∙) are estimated and

fixed; the selection ofK1 = K1(n) andK2 = K2(n), wheren =
∑D

d=1 Rd is the total number of subjects

will be discussed in Section 4.6. We propose to estimate the FPC scores{ξdr,k}
K1
k=1 and{ζdri,`}

K2
l=1 using

BLUP. For simplicity of notation, denote byYdri (t,1dri ), the new response obtained after subtracting
the group mean function estimates,Ydri (t,1dri ) − μ̂d(t). Let Ydr be the vector obtained by stacking
the responsesYdri (t,1dri ) first over t and then overi , which has the covariance matrix6dr . If BT

dr =

(8
(1)T
dr1 , . . . , 8

(1)T
dr Mdr

) denotes the
∑Mdr

i =1 Ndri × K1 matrix with elements{φ(1)
1 (t), . . . , φ(1)

K1
(t)}, where the

arguments fort match those of the corresponding row ofYdr andBdr = diag(8(2)
dr1, . . . , 8

(2)
dr Mdr

) denotes

the
∑Mdr

i =1 Ndri × K2Mdr matrix ofφ(2)
l (t)’s, then

6dr = σ 2
ε I + Bdr6ξ BT

dr + Bdr6ζB
T
dr + Edr6U,drE

T
dr , (4.5)

where6ξ = diag(λ(1)
1 , . . . , λ

(1)
K1

), 6β = diag(λ(2)
1 , . . . , λ

(2)
K2

), 6ζ = I ⊗ 6β , and6U,dr is theMdr × Mdr

variance covariance matrix of theMdr × 1 vector of{U (1dri ) : i = 1, . . . , Mdr }. Here 1dri denotes
the Ndri × 1 vector of ones andEdr = diag(1dr1, . . . , 1dr Mdr ). The matrix6dr is of size

∑Mdr
i =1 Ndri ,

where Ndri is the number of subunit locations within uniti . The BLUP calculations require inverting
the matrix6dr or 6̂dr , which are square matrices of size equal to the total number of subunit locations
within a subject,

∑Mdr
i =1 Ndri . We avoid this problem by using a computational trick that allows us to

invert matrices of size at most equal to the number of units within a subject,Mdr ; see Appendix A.1 in
the supplementary material available atBiostatisticsonline for details. Thus, our methods do not depend
essentially on the size and complexity of the functions at the unit level and can handle a very large number
of units.

4.6 The number of eigenfunctions and eigenvalues

For simplicity, we consider the case when there are the same number of subunit locationsN in each
unit and the same number of unitsM for each subject. Modifications for a variable number of units and
subunits are simple although notationally tedious.

Di and others(2009) proposed to use the percent explained variance to estimate the number of eigen-
functions that provide a good approximation to the infinite-dimensional processes{Zdr (∙)} and{Wdri (∙)}.
More precisely, letP1 andP2 be 2 thresholds and chooseK1 as

K1 = min

{

k :
λ

(1)
1 + . . . + λ

(1)
k

λ
(1)
1 + . . . + λ

(1)
N

> P1, λ
(1)
k < P2

}

.

This criterion is intuitive, easy to explain to scientific collaborators, and trivial to compute. A disadvantage
is that the thresholdsP1 andP2 need to be chosen. We recommend doing this via simulations, which can
be quickly conducted using our methods.

Alternatively, one can use likelihood ratio testing. LetÛdr be the M-dimensional vector of the
predicted values of the collection{Udr (1dri ) : 1dri }. For a choiceK1 and K2, we denote bŷξdr the
K1-dimensional vector of the estimated FPC scores at level 1 of the hierarchy, byζ̂dr = (̂ζdr1,1, . . . ,
ζ̂dr1,K2, . . . , ζ̂dr M,K2)

T theM K2-dimensional vector of the estimated FPC scores at level 2. Furthermore,
let 1M be theM-dimensional vector of ones, let̂8(1)T = 1T

M ⊗ φ̂(1)T , let φ̂(1) be theN × K1 matrix

of estimated eigenfunctionŝφ(1)
k (t), and let8̂(2) = IM ⊗ φ̂(2)T is theM N × M K2 matrix of estimated

eigenfunctionŝφ(2)
l (t), whereIM is the identityM × M matrix. Let 1N be theN × 1 vector of ones and
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E = IM ⊗ 1N . Define by`(K1, K2) a pseudo-Gaussian log-likelihood for the observed sample, condi-
tional both on the estimated FPC scoresξ̂dr and ζ̂dr and on the predicted values of̂Udr ’s which, except
for irrelevant constants, is given by

`(K1, K2) = −
1

2

∑

d,r

log |6̂dr | (4.6)

−
1

2

∑

d,r

(Ydr − 8̂(1)̂ξdr − 8̂(2)ζ̂dr − EÛdr )
T 6̂−1

dr (Ydr − 8̂(1)̂ξdr − 8̂(2)ζ̂dr − EÛdr ),

where6dr is the covariance matrix of the vectorYdr obtained by stackingYdri (t,1dri ). This matrix
is of sizeN M = 600 in our application. In the Appendix A.2 of the supplementary material available
at Biostatisticsonline, we show how to compute the determinant of6̂dr by using only determinants of
matrices of much smaller dimension.

Because of the hierarchy of the eigenvaluesλ
(l )
1 > λ

(l )
2 > . . . for l = 1, 2, it is necessary to define

the likelihood ratio test (LRT) only for nested models. We define the LRT for testing(K1, K2) versus
(K1 + δ, K2 + 1 − δ) by 2̀ (K1 + δ, K2 + 1 − δ) − 2`(K1, K2), whereδ = 0, 1. Both δ = 0 and
δ = 1 correspond to testing the null hypothesis that a variance component is equal to zero in a linear
mixed-effects model. The asymptotic null distribution of the LRT is a 50–50 mixture of 0.0 and aχ2

1
(Stram and Lee, 1994), whose 0.95 quantile is 2.71. When the number of independent observations is
not large enough one can refine the finite sample approximation of the LRT using methods described in
Crainiceanu (2008) and Grevenand others(2008) based on the results of Crainiceanu and Ruppert (2004)
and Crainiceanuand others(2005).

We propose to use a sequence of LRTs withα-level equal to 0.05. This is equivalent to minimizing an
information criterionIC(K1, K2) = −2`(K1, K2)+Q(K1+K2), whereQ = 2.71. A popular alternative
to this criterion is the Akaike information criterion (AIC) (M̈uller and Stadtm̈uller, 2005), which uses
Q = 2 and is equivalent to sequential LRT with anα-level of 0.079.

4.7 Measurement error variance

Finally, using (3.6), we estimate the variance of the measurement error by

σ̂ 2
ε =

∫

t∈T
{V̂W(t, t) − K̂ W(t, t) − ν̂(0)}dt, (4.7)

whereV̂W(t, t) is defined by expression (4.4) fort = s. Alternatively, one can use (3.4). The estimated
values for the variance of the measurement error are roughly the same in our experience. We use (3.6) to
estimateσ 2

ε for the simulation studies and our data analysis.

5. SIMULATION STUDIES

5.1 Outline of the main results

We conducted a simulation study to assess the performance of the proposed estimation procedure in real-
istic settings. The details of the study and of the results are presented in Appendix B of the supplementary
material available atBiostatisticsonline. In this section, we summarize the main findings based on 1000
generated data sets and discuss the algorithm performance.

In short, we generate data from model (3.2) under 6 scenarios given by 2 different spatial designs
of the unit locations and 3 types of spatial autocorrelation functions, which differ not only in the range
they decay to zero but also in their monotonicity and behavior at1 = 0. Figure 1 gives the mean of the
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Fig. 1. The mean of the estimated correlation functions along with their pointwise 90% confidence interval in the case
of the uniform design (top panel) and the colon carcinogenesis study design (bottom panel) of the units location. The
true correlation functions (grey line) areρ1 (left), ρ2 (middle), andρ3 (right); the estimates are byk-nearest neighbor
with positive semi-definite adjustment (solid lines).

adjusted correlation estimators̃ρ(1) = ν̃(1)/̃ν(0) along with their 90% pointwise confidence intervals.
Herẽν(1) is thek-nearest neighbor estimator ofν(1) adjusted for positive semi-definiteness (Christakos,
1984). The correlation estimators are very nearly unbiased and suggest somewhat smaller variability in the
case of uniform design than in the actual design of the colon carcinogenesis study of unit locations. Our
methodology performs remarkably well at recovering the true eigenfunctions and at correctly identifying
the different levels of variation. These results and many other results presented in the supplementary
material available atBiostatisticsonline confirm the well behavior of the estimators of all the model
components.

5.2 Comparative algorithm performance

As mentioned in the introduction, our method is far more computationally efficient than that of its closest
competitor, the one introduced by Baladandayuthapaniand others(2008). On a test data set withD = 2,
R = 6, Mdr = 20 andNdri = 30, our R-implementation takes 5 s on a 8-core Pentium processor
with 32 GB of RAM, while theirs takes over 5 h. This difference allowed us to perform the simulation
analyses described in this section. Also, we can perform analyses that would be computationally daunting
for the methods in Baladandayuthapaniand others(2008). For example, in Section 6, we present a cross-
validation analysis of the colon carcinogenesis data by deleting one rat at a time. More importantly, our
methods can easily be extended to 50 or 500 rats, whereas it is reasonable to assume that the algorithm of
Baladandayuthapaniand otherswould be significantly slower in these cases.

6. DATA ANALYSIS

We now apply our proposed method to the colon carcinogenesis study. A detailed description of the study
was previously published in Baladandayuthapaniand others(2008). Briefly, the aims of the study were
to analyze the association between diet (fish/corn) and colon cancer and to understand the mechanisms
underlying the genesis of the colon cancer. We focus on the data from the rats assayed at 24 h after the
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Fig. 2. Expression level of p27 along the crypt for the first 3 crypts within 2 rats.

carcinogen exposure. These data contain a total of 12 rats divided into 4 diet groups: corn or fish oil with
or without butyrate supplement. For each rat, the response variable p27 is measured for all cells within
several colonic crypts situated at various locations across the colon tissue. There are about 20 crypts per
rat and 18–37 cells per crypt with an average of 26.6 cells per crypt. Data are log-transformed before the
start of the analysis. Figure 2 shows the log p27 along the crypt for the first 3 crypts within 2 rats. The
circles represent pairs{t, log p27(t)}, wheret is the relative cell position and the solid lines represent the
estimated mean function using penalized splines. The goals of the analysis are (1) to estimate the diet
group mean functions of the p27 expression level, (2) to estimate the spatial correlation of the crypt mean
functions, and (3) to quantify the various levels of uncertainty, namely rats, crypts, and spatial. To address
these goals, we use the methodology outlined in Section 4.

6.1 The correlation between crypt mean functions

The first step is to estimate the spatial correlation between the crypt mean functions. Figure 3 shows the
k-nearest neighbor estimate of the correlationρ̂(1) as a function of the crypt location distance1. The
cutoff 1∗ is chosen to reflect the best scientific knowledge and should not depend on the specific subjects
nor on the number of subjects in the study. We used a cutoff value of1∗ = 1000 microns because the
biologists do not expect the expression level of p27 measured within crypts that are more than 1000
microns apart to be correlated. We usedk-nearest neighbor method withk = 111 estimated by cross-
validation. This specific value of the neighboring sizek corresponds to crypt distances ranging between
90 and 300 microns, with larger distances for larger1.

The left panel displays the correlation estimator for the entire data set. The correlation pattern is
interesting, indicating a relatively sharp decline corresponding to crypts distances of up to 100 microns,
followed by a moderate decline for crypts that are between 100 and 500 microns apart and then a very
steep decay for crypts that are between 500 to 600 microns apart. Correlation is small negligible for
distances between crypts larger than 600 microns.

The right panel of Figure 3 displays the estimates of the correlation obtained by leave-one-rat-out in
the analysis. For the sensitivity analysis, the neighboring size was adjusted for each case separately. The
results suggest some sensitivity to individual rats. When removing rats from the analysis, the correlation
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Fig. 3. The estimated correlation function (left panel) with positive semi-definiteness adjustment (solid line) or without
(dashed line). Estimates of the correlation function by taking one rat out (dashed line) for all the rats in the colon
carcinogenesis study.

Table 1. Estimated eigenvalues at levels 1 and 2 in the colon carcinogenesis data example

Level 1 eigenvalues Level 2 eigenvalues
Comp1 Comp 1 Comp 2 Comp 3 Comp4

Eigenvalue (×103) 26.835 2.695 0.803 0.227 0.100
% Variation 99.88 69.54 20.72 5.86 2.59
Cumulative % Variation 99.88 69.54 90.26 96.12 98.71

function can vary by up to 0.30, especially for crypt locations that are over 100 microns apart. This type
of analysis would have been computationally prohibitive for competing methods but is routine using our
approach.

6.2 Rat/Crypt/Spatial level variability

The second step is to quantify the spatial variability as well as the variability corresponding to the rat level
and the crypt level. Our approach estimated the crypts spatial variabilityσ̂ 2

U to 4.88 at a scale of 10−3. To
estimate the uncertainty at both the rat and crypt levels, we need first to select the number of components
at each level: we use the LRT, AIC and the percent variance explained criteria described in Section 4.6.
The percent variance explained estimatesK1 = 1 andK2 = 3 or 4, depending on how the thresholdsP1
andP2 are set, while the LRT or AIC criterion choosesK1 = 2 andK2 = 7.

Table 1 provides the estimated eigenvalues at both the rat and crypt level. Results indicate that there
is roughly 10 times more variability at the rat level compared to the crypt level (compare 26.835 with
3.825= 2.695+ 0.803+ 0.227+ 0.100). This explains why estimating the between-crypts (units) co-
variance function is fairly difficult in such small data sets. Of course, with much more data, estimating
the within-crypts (units) covariance function provides robust inference and more stable estimators of the
spatial covariance function.

We first consider the rat level. Almost all the information at the rat level is contained in one dimension:
the first eigenvalue explains over 99% of the variation. Figure 4 shows the estimated eigenfunction at the
rat level. In addition, it presents the estimated mean of log p27 for the fish oil with butyrate supplement
diet group, plus and minus a suitable multiple of the estimated eigenfunction. The first eigenfunction at
the rat level is almost constant, implying a simple model, that of a random intercept for the effect of a rat,
thus allowing in future analysis for much simpler models.

The crypt level has more direction of variation: about 98% of the variability is explained by the first 4
components. Figure 4 shows 2 of the estimated eigenfunctions at the crypt level as well as the estimated
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Fig. 4. Estimated eigenfunctions at level 1 and 2 (top panel). Estimated functions for fish oil with butyrate diet group,

as given bŷμd(t) ± 1.96λ(l ) 1/2
k φ̂

(l )
k (t), for l = 1, 2 andk = 1, 2.

mean of log p27 for the corn oil-butyrate diet group plus or minus a multiple of the corresponding eigen-
functions. The first eigenfunction accounts for roughly 2/3 of the observed variability at the crypt level.
Because it is positive it follows that crypts that are positively loaded on this component have higher p27
expression levels within the same rat. This effect has a more complex structure, being more than twice
as large for stem cells,t = 0, than for cells at the luminal surface,t = 1. The second FPC is roughly
centered around 0 and accounts for about 21% of the observed crypt-level variability. Crypts that are pos-
itively loaded on this component will tend to have higher p27 expression levels for luminal surface cells
than for stem cells. This geometric decomposition of observed variability into the various sources is both
statistically and scientifically new. Boxplots of the estimated FPC scores are given in Figure 5.

6.3 The mean functions

We now turn to the estimation of group mean functions. We first estimated the mean functions by penal-
ized spline smoothing (Ruppertand others, 2003) under a working independence assumption, obtaining
estimates quite similar to the Bayesian estimates of Baladandayuthapaniand others(2008) shown in
their Figure 3. This is illustrated in the Figure S.8, left panel, in the Appendix B, of the supplemen-
tary available atBiostatisticsonline. As in Baladandayuthapaniand others, we obtain larger average of
p27 corresponding to rats in the corn oil diet with butyrate supplement group compared to the other
diet groups. Though the working independence assumption may not be quite appropriate for our mod-
erately large setting, the plot suggests a quadratic relationship between the level of log p27 and the
relative cell position. The relationship seems to be different according to the diet group, with the dif-
ference being captured by the intercept. Thus, it is reasonable to model the group mean functions as
μd(t) = β01 + β1t + β2t2 + β021(d = 2) + β031(d = 3) + β041(d = 4), where 1(d = i ) is an indicator
variable which is equal to 1 ifd = i and 0 otherwise andd = 1, 2, 3, 4 as usual stands for the diet group.
Figure S.8. middle panel presents the estimates of the group mean functions by ordinary least squares
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Fig. 5. The boxplots of the estimated FPC scores standardized by the corresponding estimated eigenvalues, at levels
1 (rat) and 2 (crypt) for the colon carcinogenesis application.

estimation. Although the estimation approach still exploits the independence working assumption, it con-
firms that the quadratic form with diet group specific intercept assumed for the group mean functions is
reasonable for our setting. Figure 6 (left panel), and also Figure S.8, right panel, of the supplementary
material available atBiostatisticsonline shows the estimated quadratic mean functionsμ̂d(t), whereβ̂
is obtained via generalized least squares estimation, using the covariance estimate6̂dr described in (4.5)
with the eigenvalues and eigenfunctions estimated in Section 6.1 and the correlation function and variance
estimated in Section 6.2. Interestingly, the spread of the estimated mean functions is visibly larger when
the estimation accounts for the dependence structure (right panel) as opposed to the case when it uses
an independence working assumption (left and middle panels). In fact, the estimated mean functions for
the fish oil diet with/without the butyrate supplement group seem to be the most affected by an indepen-
dence working assumption. Accounting for the dependence structure, we find that the biomarker p27 is
suppressed in the fish oil with butyrate group, while it is overexpressed in the corn oil with butyrate group
at least at 24 h after the exposure to the carcinogen.

By being Bayesian, Baladandayuthapaniand others(2008) are able to do posterior inference. In par-
ticular, they can test whether the diet group mean functions are all the same, their Figure 3(b), and whether
there is an interaction, their Figure 4. The former is easily done in our framework through a parametric
bootstrap. To form bootstrap samples, we first use our analysis to estimate the distributions ofZdr (∙),
Wdri (∙), Udr (∙), andεdri (∙). To generate a bootstrap sample under the null hypothesis that all the mean
functions are the same, we first generate bootstrap realizationsZb

dr (∙), Wb
dri (∙), Ub

dr (∙), andεb
dri (∙). We

then form bootstrap outcomes asYb
dri (∙,1dri ) = μ̂(∙) + Zb

dr (∙) + Wb
dri (∙) + Ub

dr (1dri ) + εb
dri (∙), where

μ̂(∙) is the mean of the estimated mean functionsμ̂d(∙). Testing for interactions can be done similarly.
We carried out testing whether the functions are all the same. Figure 6 (right panel) shows the 90%

pointwise confidence intervals for the diet group mean functions, based onB = 10 000 bootstrap samples.
It suggests that the mean of the fish oil with butyrate supplement diet group is significantly lower than the
means corresponding to the other diet groups, while the mean for the corn oil with butyrate supplement
diet group is significantly larger. These findings support 2 biological hypotheses, which are of interest
to nutritionists: (1) the corn oil with butyrate supplement is causing an increase in the cell proliferation,
which is unfortunate when it comes to cancer (Baladandayuthapaniand others, 2008) and (2) the fish oil
with butyrate supplement is causing a decrease in p27 expression levels at this period, which in turn leads
to a decrease in proliferation (or vice-versa).
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Fig. 6. The estimated mean functions for the 4 diet groups by weighted least squares quadratic estimation, accounting
for the dependence considered by the model (left panel) along with their 90% pointwise confidence intervals obtained
via parametric bootstrap approach (right panel).

7. CONCLUDING REMARKS

In this paper, we present a new modeling framework for multilevel functional data where the functions
at the lowest hierarchy level are spatially correlated. Our approach is based on the explicit partition of
the total covariance using simple functional mixed-effects components. Multilevel principal components
provide parsimonious orthonormal decomposition of the functional spaces and lead to major computa-
tional improvements. Among other things, our approach provides means to quickly analyze the group
mean functions and test for their differences using generalized least squares to improve efficiency. It fa-
cilitates sensitivity analysis quickly by removing a single subject or groups of subjects and then refitting.
Furthermore, it allows to apportion the variability in the data among units within subjects, subunit loca-
tions among units, and of course noise, while at the same time understanding the spatial correlation of
the functional data arising from the units. Lastly, but not least, this approach added new insights into one
set of scientific data and it provides a much more flexible software platform for future methodological
developments.

SUPPLEMENTARY MATERIALS

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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